DISTINCT NON-GENOMIC SIGNAL TRANSDUCTION PATHWAYS CONTROLLED BY 17β-ESTRADIOL REGULATE DNA SYNTHESIS AND CYCLIN D1 GENE TRANSCRIPTION IN HepG2 CELLS
نویسندگان
چکیده
Estrogens induce cell proliferation in target tissues by stimulating progression through the G1 phase of the cell cycle. Activation of cyclin D1 gene expression is a critical feature of this hormonal action. The existence of rapid/nongenomic estradiol-regulated protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) signal transduction pathways, their cross talk, and role played in DNA synthesis and cyclin D1 gene transcription have been studied herein in human hepatoma HepG2 cells. 17 -Estradiol was found to rapidly activate PKCtranslocation and ERK-2/mitogen-activated protein kinase phosphorylation in this cell line. These actions were independent of each other, preceding the increase of thymidine incorporation into DNA and cyclin D1 expression, and did not involve DNA binding by estrogen receptor. The results obtained with specific inhibitors indicated that PKCpathway is necessary to mediate the estradiolinduced G1-S progression of HepG2 cells, but it does not exert any effect(s) on cyclin D1 gene expression. On the contrary, ERK-2 cascade was strongly involved in both G1-S progression and cyclin D1 gene transcription. Deletion of its activating protein-1 responsive element motif resulted in attenuation of cyclin D1 promoter responsiveness to estrogen. These results indicate that estrogen-induced cyclin D1 transcription can occur in HepG2 cells independently of the transcriptional activity of estrogen receptor, sustaining the pivotal role played by nongenomic pathways of estrogen action in hormone-induced proliferation.
منابع مشابه
Distinct nongenomic signal transduction pathways controlled by 17beta-estradiol regulate DNA synthesis and cyclin D(1) gene transcription in HepG2 cells.
Estrogens induce cell proliferation in target tissues by stimulating progression through the G1 phase of the cell cycle. Activation of cyclin D(1) gene expression is a critical feature of this hormonal action. The existence of rapid/nongenomic estradiol-regulated protein kinase C (PKC-alpha) and extracellular signal-regulated kinase (ERK) signal transduction pathways, their cross talk, and role...
متن کاملBiphasic estradiol-induced AKT phosphorylation is modulated by PTEN via MAP kinase in HepG2 cells.
We reported previously in HepG2 cells that estradiol induces cell cycle progression throughout the G1-S transition by the parallel stimulation of both PKC-alpha and ERK signaling molecules. The analysis of the cyclin D1 gene expression showed that only the MAP kinase pathway was involved. Here, the presence of rapid/nongenomic, estradiol-regulated, PI3K/AKT signal transduction pathway, its modu...
متن کاملIKKalpha regulates mitogenic signaling through transcriptional induction of cyclin D1 via Tcf.
The Wnt/beta-catenin/Tcf and IkappaB/NF-kappaB cascades are independent pathways involved in cell cycle control, cellular differentiation, and inflammation. Constitutive Wnt/beta-catenin signaling occurs in certain cancers from mutation of components of the pathway and from activating growth factor receptors, including RON and MET. The resulting accumulation of cytoplasmic and nuclear beta-cate...
متن کاملDistinct signaling pathways mediate stimulation of cell cycle progression and prevention of apoptotic cell death by estrogen in rat pituitary tumor PR1 cells.
Estrogens control cell growth and viability in target cells via an interplay of genomic and extragenomic pathways not yet elucidated. Here, we show evidence that cell proliferation and survival are differentially regulated by estrogen in rat pituitary tumor PR1 cells. Pico- to femtomolar concentrations of 17beta-estradiol (E2) are sufficient to foster PR1 cell proliferation, whereas nanomolar c...
متن کاملHormone-induced DNA damage response and repair mediated by cyclin D1 in breast and prostate cancer
Cell cycle control proteins govern events that leads to the production of two identical daughter cells. Distinct sequential temporal phases, Gap 1 (G1), Gap 0 (G0), Synthesis (S), Gap 2 (G2) and Mitosis (M) are negotiated through a series of check points during which the favorability of the local cellular environment is assessed, prior to replicating DNA [1]. Cyclin D1 has been characterized as...
متن کامل